May 2007

FGB3040CS 300mJ, 400V, N-Channel Current Sensing Ignition IGBT

FAIRCHILD

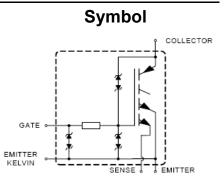
SEMICONDUCTOR®

FGB3040CS EcoSPARK[™] 300mJ, 400V, N-Channel Current Sensing Ignition IGBT

General Description

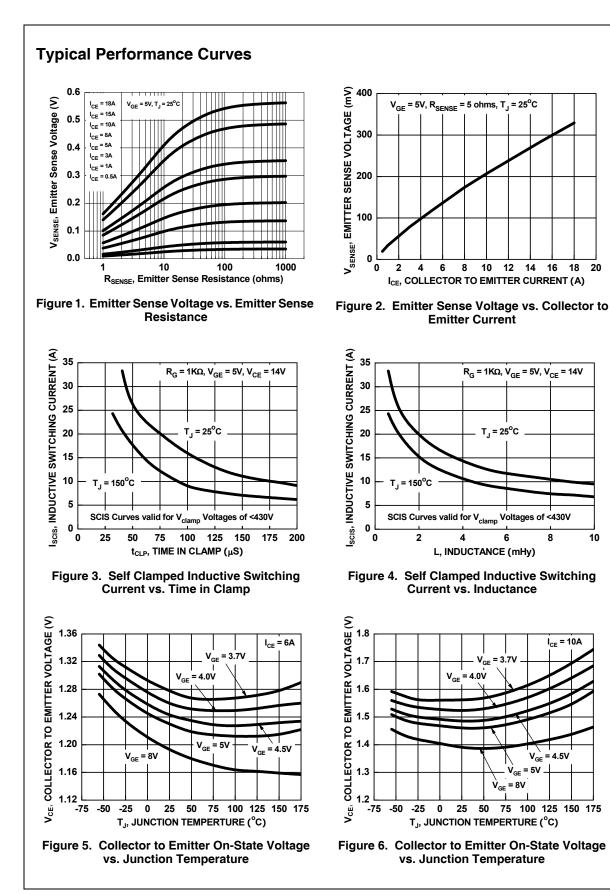
The FGB3040CS is an Ignition IGBT that offers outstanding SCIS capability along with a ratiometric emitter current sensing capability. This sensing is based on a emitter active area ratio of 200:1. The output is provided through a fourth (sense) lead. This signal provides a current level that is proportional to the main collector to emitter current. The effective ratio as measured on the sense lead is a function of the sense output, the collector current and the gate to emitter drive voltage.

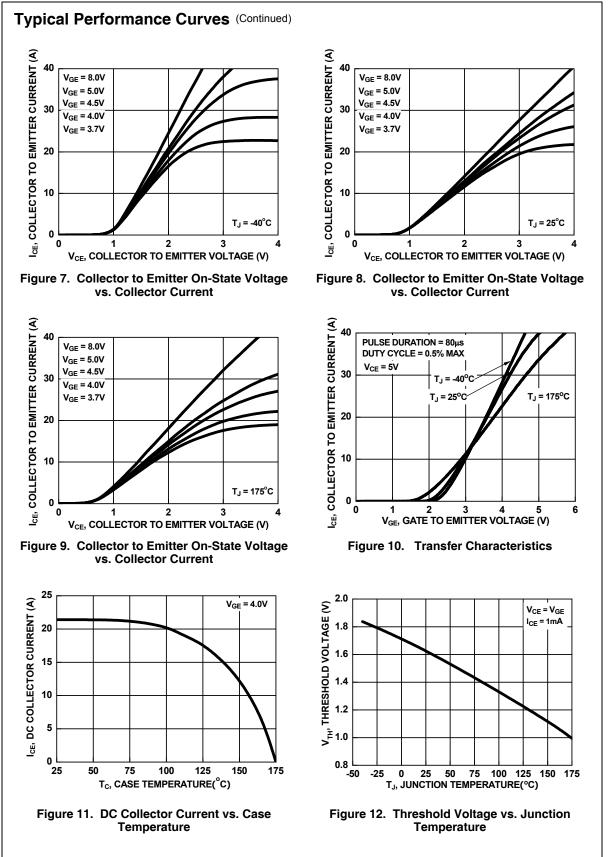
Applications


- Smart Automotive Ignition Coil Driver Circuits
- ECU Based Systems
- Distributorless Based Systems
- Coil on Plug Based Systems

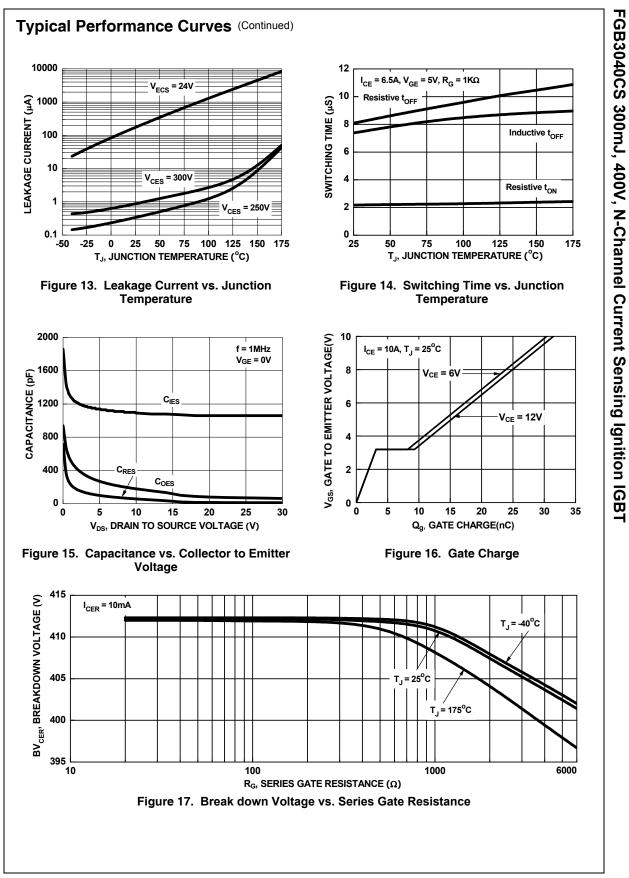
Features

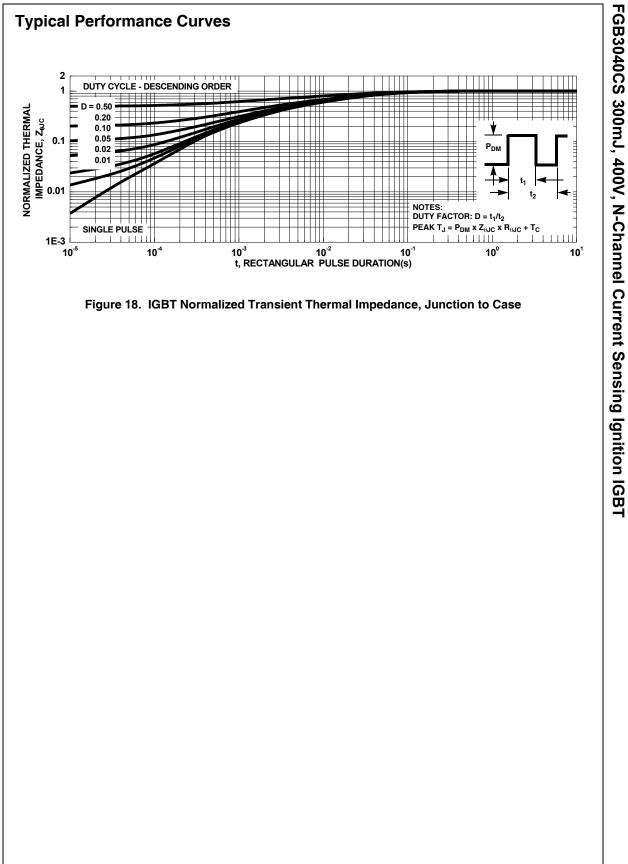
- SCIS Energy = 300mJ at T_J = 25°C
- Logic Level Gate Drive


Package

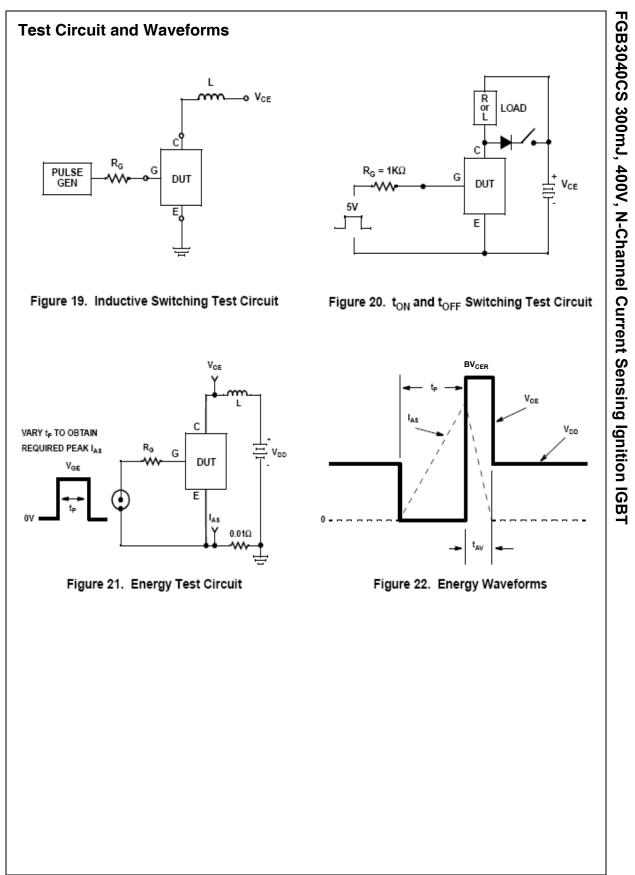

Device Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

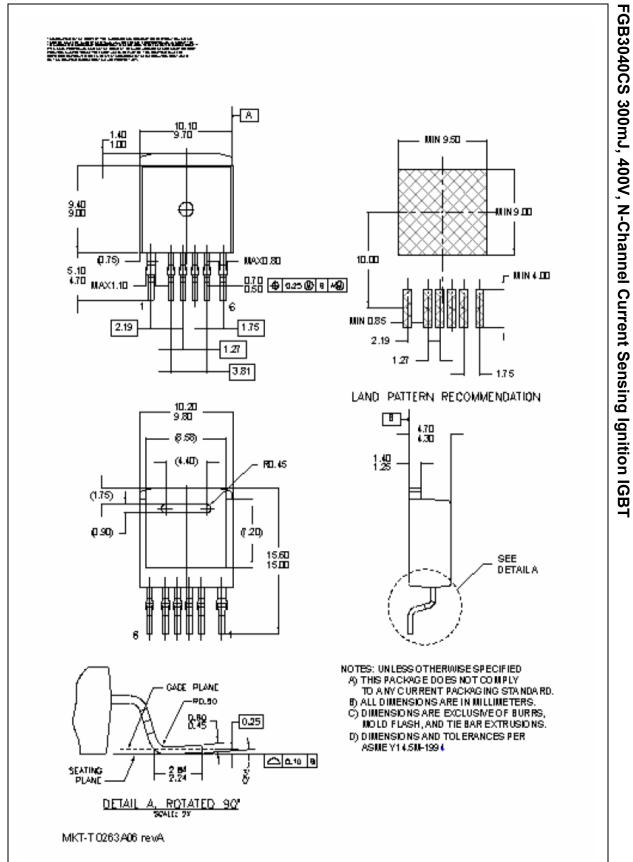
Symbol	Parameter	Ratings	Units	
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 2mA)	430	V	
BV _{ECS}	Emitter to Collector Breakdown Voltage (I _C = 1mA) (Reverse Battery Condition)	24	V	
E _{SCIS25}	Self Clamping Inductive Switching Energy (at starting $T_J = 25^{\circ}C$)	300	mJ	
E _{SCIS150}	Self Clamping Inductive Switching Energy (at starting T _J = 150°C)	170	mJ	
I _{C25}	Continuous Collector Current, at V_{GE} = 4.0V, T_C = 25°C	21	Α	
I _{C110}	Continuous Collector Current, at V _{GE} = 4.0V, T _C = 110°C	19	Α	
V _{GEM}	Maximum Continuous Gate to Emitter Voltage	±10	V	
D	Power Dissipation, at T _C = 25°C		W	
P _D	^D Power Dissipation Derating, for $T_C > 25^{\circ}C$		W/ºC	
TJ	Operating Junction Temperature Range	-40 to 175	°C	
T _{STG}	TG Storage Junction Temperature Range		°C	
TL	Max. Lead Temp. for Soldering (at 1.6mm from case for 10sec)	300	°C	
T _{PKG}	Max. Package Temp. for Soldering (Package Body for 10 sec)	260	°C	
ESD	Electrostatic Discharge Voltage, HBM model (100pfd, 1500 ohms)	4	kV	


Device Marking		rking Device Packag		ge Reel Size	Tape Wid	lth	Quantity			
3040CS FGB3040CS TO-26		TO-263 6	Lead 300mm 24mm			800				
304	40CS	FGB3040CS	TO-263 6	Lead	Tube	N/A			50	
Electr	ical Ch	aracteristic	S T _A = 25°	C unless c	therwise noted					
Symbol		Parameter			Test Condi	tions	Min	Тур	Max	Units
off Sta	te Chara	cteristics								
BV _{CER}	Collector to	o Emitter Breakdo	wn Voltage	$R_{GE} = 1K$	A, V _{GE} = 0, Ω, See Fig. 17		370	410	430	v
BV _{CES}	Collector to	collector to Emitter Breakdown Voltage		$T_J = -40 \text{ to } 150^{\circ}\text{C}$ $I_{CE} = 10\text{mA}, V_{GE} = 0\text{V}$ $R_{GE} = 0, \text{ See Fig. 17}$			390	430	450	v
020			$T_{\rm J} = -40 \text{ t}$							
BV _{ECS}	Emitter to Collector Breakdown Voltage		T _C = 25°C)		30	-	-	V	
3V _{GES}		nitter Breakdown		$I_{GES} = \pm 2$			±12	±14	-	V
GEO	Gate to En	nitter Leakage Cu	rrent	$V_{GE} = \pm 10$			-	-	±9	μA
CES	Collector to	o Emitter Leakage	Current	$V_{CES} = 25$		$T_{\rm C} = 25^{\rm o}{\rm C}$	-	-	25	μA
010				See Fig. 7		$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	1	mA
I _{ECS}	Emitter to	Collector Leakage	Current	$V_{EC} = 24V, \qquad T_C = 25^{\circ}C$			-	-	1	mA
		-		See Fig. 7	13	T _C = 150 ^o C	-	-	40	-
۲ ₁	Series Gat	e Resistance		l			-	100	-	Ω
on Stat	te Chara	cteristics								
V _{CE(SAT)}	Collector to	o Emitter Saturatio	on Voltage	I _{CE} = 6A,	V _{GE} = 4V	T _C = 25°C See Fig. 5	-	1.3	1.6	V
. ,		o Emitter Saturatio		I _{CE} = 10A	, V _{GE} = 4.5V	T _C = 150 ^o C See Fig. 6	-	1.6	1.85	v
V _{CE(SAT)}	Collector to	o Emitter Saturatio	on Voltage	I _{CE} = 15A	, V _{GE} = 4.5V	T _C = 150°C	-	1.8	2.35	V
CE(ON)	Collector to	o Emitter On State	Current	V _{CE} = 5V,	V _{GE} = 5V		-	37	-	Α
ynam	ic Chara	cteristics								
Q _{G(ON)}	Gate Charge $I_{CE} = 10A, V_{CE} = 12V,$ $V_{GE} = 5V,$ See Fig. 16		-	15	-	nC				
V _{GE(TH)}	Gate to Er	nitter Threshold V	oltage	I _{CE} = 1mA See Fig. 1	$V_{CE} = V_{GE}$	$T_{\rm C} = 25^{\circ}{\rm C}$	1.3	1.6	2.2	v
		nitter Plateau Volt		-		T _C = 150°C	0.75	1.1 3.0	1.8	V
/ _{GEP}		ense Area Ratio	aye		, V _{CE} = 12V ea/Total Area		-	1/200	-	v
AREA		Irrent Sense Ratio			A, V _{GE} = 5V, R _S	- 5 0	-	230	-	-
5Ω		Irrent Sense Ratio			A, V _{GE} = 5V, R _S A, V _{GE} = 5V, R _S		550	640	- 765	
^{20Ω}				ICE - 9.07	ν, ν _{GE} – 5ν, τι _S	ENSE - 20 32	550	040	705	<u> </u>
Switcl		rn-On Delay Time		V _{CE} = 14V.	R _I = 1Ω		-	0.6	4	μS
	Current Iu	,		V _{GE} = 5V, I						
d(ON)R		a Tima Desisting		T ₁ = 25°C,	See Fig. 14		-	1.5	7	μS
d(ON)R rR	Current Ris	se Time-Resistive		0	$V_{CE} = 300V, L = 500\mu Hy,$		-	4.7	15	μS
Switcl d(ON)R rR d(OFF)L	Current Ris	se Time-Resistive rn-Off Delay Time	Inductive	V _{CE} = 300			-	4.7	15	
d(ON)R rR	Current Ris Current Tur		Inductive	V _{CE} = 300V V _{GE} = 5V, I T _J = 25°C,	$R_G = 1K\Omega$ See Fig. 14		-	2.6	15	μS
d(ON)R rR d(OFF)L fL	Current Ris Current Tu Current Fa	rn-Off Delay Time	-Inductive	V _{CE} = 300 V _{GE} = 5V, I T _J = 25°C, T _J = 25°C,	R _G = 1KΩ		-			μs mJ
d(ON)R rR d(OFF)L fL SCIS	Current Ris Current Tu Current Fa Self Clamp	rn-Off Delay Time	-Inductive	V _{CE} = 300 V _{GE} = 5V, I T _J = 25°C, T _J = 25°C,	R _G = 1KΩ See Fig. 14 L = 3.0mHy, I _C		-	2.6	15	



FGB3040CS Rev. A




FGB3040CS 300mJ, 400V, N-Channel Current Sensing Ignition IGBT

FGB3040CS Rev. A

FGB3040CS Rev. A

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ **EcoSPARK**[®] FACT Quiet Series™ FACT[®] FAST[®] FastvCore™ FPS™ FRFET® Global Power Resource[™] Green FPS™

GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ Motion-SPM™ **OPTOLOGIC**[®] **OPTOPLANAR[®]** PDP-SPM™ Power220[®] Power247[®]

Green FPS™ e-Series™

POWEREDGE[®] Power-SPM[™] PowerTrench® Programmable Active Droop™ **QFET**[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT[™]-6

SuperSOT[™]-8 . SyncFET™ The Power Franchise® TinvBoost™ TinyBuck™ TinyLogic® **TINYOPTO™** TinvPower™ TinyPWM™ TinyWire™ μSerDes™ UHC® UniFET™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 129